
International Journal of Theoretical Physics, VoL 32, No. 6, 1993 

Dirac Spinors in an Inhomogeneous 
Cosmological Model 
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Solutions of the Dirac equation in the Senovilla inhomogeneous cosmological 
model, which is free of  a big-bang singularity, are presented. It is found that 
the energy density of  the spinors is initially zero, but attains a maximum at some 
time and then decreases. 

Recently Senovilla (1990) proposed a new class of inhomogeneous 
exact solutions to Einstein's field equations with a perfect-fluid source 
obeying a radiation-like equation of state. This solution is free from a 
big-bang singularity, contrary to standard models of cosmology. In the 
past, several improved methods have been proposed to remove the singu- 
larity, for example, by using nonminimal coupling with a scalar field 
(Sathyaprakash et aL, 1984, 1986). 

The absence of an initial singularity in the Senovilla model is physically 
very interesting. However, these solutions are inhomogeneous, contrary to 
the standard model. Thus these solutions need examination under various 
physical conditions so as to assess their relevance in the context of the 
observable universe. 

As a first step, one would like to study the behavior of an elementary 
particle in this inhomogeneous model. Since an important class of elemen- 
tary particles have spin 1 and are represented by Dirac spinors, it is desirable 
to study their properties in this new metric. It may be noted that Senovilla's 
metric has some similarity with a special case of the metric studied by 
Kamran and McLenaghan (1984) in the context of the Dirac equation. 
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The line element of the Senovilla metric has the form 

ds 2 = e2f (-dt2 + dx 2) + G( q dy2 + q-1 dz 2) 

where 

(1) 

where 

~(Gh. E l  z ~ 1 p p o- v ~a  ~ b  +{,,~,}ha)g~phby y (6) 

Here {f~,} is the affine connection and h~ are tetrads defined as (Srivastava, 
1989) 

h,~hbg~ - 71~b (7) 

7/~b is the metric for flat space-time, and the g ~  are given by the line element 
[see equation (1)]. 

.~a are /-times the standard Dirac matrices in flat space-time, which 
are related to y~ by 

y~" = h ~ "  (8) 

These matrices satisfy the anticommutation relations 

{y ' ,  y~} = 2g '"  (9a) 

{~", ~b} =2n"b (9b) 

e / = cosh2(at) cosh(3ax) (2a) 

G = cosh(at) sinh(3ax) cosh-2/3(3ax) (2b) 

q = cosh3(at) sinh(3ax) (2c) 

Here the range of the coordinates is 

- ~ <  t,x, y , z  < ~ (3) 

and a is an arbitrary constant (Senovilla, 1990). 
Now the action for Dirac spinors ~0 is taken as 

,f A = ~  d4x ( - g ) l / 2 ~ " O ~ t  (4) 

where y~' are Dirac matrices in curved space and D~ is the covariant 
derivative given by 

D. = o.-F~, (5) 
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Note that the action given in equation (4) is conformally invariant. Under 
conformal transformation 

~2f_(c) (10) 

The action for tp can be rewritten as 

= i  f d4 x ~(c)~.E(c) ,~(C) r~(c).t,(c) A ( - g  )w y ,.,~ ~, (11) 
2 J 

where 

,y~(c) : ef,y,~ 

$(c) = e3f/2~ 

D(C)=0 _V(c) tx --p. 

The Dirac equation obtained from the action in equation (11) has the form 

iy~(c)(O _ (c) (c)_ Pc )41 - 0  (12) 

Under the conformal transformation [see equation ( 1 0 ) ]  

ds 2= e2Y ds 2{c) (13) 

with 

where 

ds2(c) = -dt2-l- dx2-t- B dy2 + C dz 2 (14) 

B = tanh2(3ax) sech2/3(3ax) 

C = sech6(at) sech8/3(3ax) 

Using the metric given by the line element (14), we find that the Dirac 
equation takes the form 

a 3-sinh2(3ax) 
~,~ + ~' 0~--~ coshS/3(aax) tanh(3ax) 

- 2a t anh(aax)+4  3 - sinh2(aax) ] ~b(~) 
cosh2(3ax) tanh(3ax)J 

coshl/3(3ax) 
4 tanh(3ax) ~202~J(c) 

+ cosh4/3(3ax) cosh3(at)~/3036(c) = 0 (15) 
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Writing 

�9 (c) I ~ ( c ) |  coshl3/12(3aX) 

=~. ~ ) / =  ~-~Tr)sinh~/3(3ax) 

x exp[-�89 cosh-8/a(3ax) +3 cosh 2/3(3ax)] 

{'u l 
X e ikzy+ik3z 2 (16) 

W 4 

(k2, k3 are components of wave vectors in the y and z directions, respec- 
tively), we find that equation (15) reduces to four coupled equations 

Oou, + (01 + k2 
cosh4/3(Bax).~ 

sinh(3ax) ]u4 
+ ik 3 cosh4/3(3ax) cosh3(at)u3 = 0 (17a) 

cosh4/3(3ax)~ 
Oou2+(ol-k2 ~ ']U3 

- ik3 cosh4/3(3ax) cosh3(al)u4 = 0 (17b) 

cosh4/3(3ax)~ 
O~ Ol+k2 sinh(3ax) ]u2 

+ ik3 cosh4/3(3ax) cosh3(at)ul = 0 (17c) 

cosh4/3(3ax) ~ 
00u4+ 01-k2 sinh(3ax) ] - -  ' / /1  

- ik 3 cosh4/3(3ax) cosh3(at) = 0 (17d) 

The solutions of equations (17) turn out to be column matrices, 
[ (-ik3/3a) sinh(;t)[3+sinh2(at)] ~ 

u, = I cosh-4/3(3ax) | (18a) 
~exp{ke I [cosh a/3( 30) ]/[sinh( 3ax ) ] dx ~ 

[ (ik3/3a) sinh(at)[3 + sinh2(at)] 
uz = | exp{-k~ ~ [cosh4/3(3ax)]/[sinh(3ax)] dx }] (18b) 

\ cosh -4/3(3ax) 
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/ cosh-4/3(3ax) ) 
~ exp{k21 [cosh4/g(3ax)]/[sinh(3ax)] dx} 

u3 =!  (-ik3/3a) sinh(;t)[3 + sinh2(at)] (18c) 

/exp{-k21  [ coshg/3i 3ax ) ]/[sinh( 3ax ) ] dx ) 
u 4 = ~  c ~  3(3a1) (18d) 

\ (ik3/3a) sinh(at)[3 + sinh2(at)] 

Accordingly the components of the Dirac ~b are 

Ol = NIF(X, t)ul e ik2y+%~ 
ffY2 = N 2 S ( x ,  t ) u 2  eik2y+ik3z 

~3 = N3F(x ,  t)u3 eik2y+ik3z (19) 

I114 = N 4 F ( x  , I)U4 eikj+&3 z 

where N1, N2, N3, N4 are normalization constants and 

F(x, t) = c~ l3/12(3ax) 

' sinhl/3(3ax) 
exp[-~ cosh-8/3(3ax) +3 cosh 2/3(3ax)] 

• cosh3/2(3ax) cosh3(at ) (20) 

Note that the normalization constants are evaluated from the expression 

fx ely clz ~,*~ ~~ ~, = (2~)26 (k2 - k'2)6(k3 - k;) (21) 
,/=const 

The energy-momentum tensor for the Dirac field is given by 

i - 
T~  = ~ (~by.D~0) (22) 

Since the action does not involve any self-interaction of the ~0 field, the 
energy-momentum tensor for the perfect fluid can be used. This is given as 

T~,, = (p +p)uau. +pg.~ (23) 

where p is the energy density, p is the average pressure, and the four-velocity 

u ~ = ( e %  0, 0, 0) (24)  

is normalized as u~u, =-1. 
Since 4, is conformally invariant, at the classical level we have the 

relation 
/ z  T~ - 0 (25a) 
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which  means  that 

T~ T~+ T2+ T~ =0 (258) 

N o w  using equat ions  (23) - (25) ,  we  have  

p = T~+  T 2+ T 3 (26) 

wh ich  with the help o f  equat ion  (22) b e c o m e s  

k2k3 sinh(at)[3+sinh2(at)] 
p - (27r)23a cosh8(at )  cosh4(3ax)  c~ 

• exp[-�88 cosh-8/3(3ax) + 3 cosh-2/3(3ax)] 

• { ( N I N 3  + N2N4) cosh4/3(3ax) 
sinh(3ax) 

x[ex+ ;~~176 exp( ~ Ic~176 sinh~ox) ~x)l 
+~(~,~4+~3)[e+f c~176 
+exp(-k2f C~ (27) 
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A plot of p against z = at, keeping x, k2, and k 3 constant. 
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A plot of p (after appropriate scaling) is given in Figure 1 at x = const 
hypersurface. It is seen that p(t  = 0) is zero, but increases with time and 
attains a maximum value at r = at = 0.39. It rapidly falls after this time and 
becomes zero again for large ~-. We have restricted the calculations to positive 
time only, since as for negative time [see equation (27)] p becomes negative 
which is unphysical. 

ACKNOWLEDGMENT 

The authors wish to thank B. G. Mathews for the computer plot of the 
spinor energy density. One of us (K. P. S.) is grateful to the Indian National 
Science Academy, New Delhi for financial support. 

REFERENCES 

Komran, N., and McLenaghan, R. G. (1984). Journal of Mathematical Physics, 25, 1019. 
Sathyaprakash, B. S., Goswami, P., and Sinha, K. P. (1986). Physical Review D, 33, 2196. 
Sathyaprakash, B. S., Lord, E. A., and Sinha, K. P. (1984). Physics Letters, 105A, 407. 
Senovilla, J. M. M. (1990). Physical Review Letters, 64, 2219. 
Srivastava, S. K. (1989). Journal of Mathematical Physics, 30, 2838. 


